The realization space is [1 1 x1^2 - x1 - 1 0 0 1 1 x1^3 - 2*x1^2 + 1 0 x1 - 1 1] [1 0 x1^2 - x1 1 0 1 0 x1^3 - 2*x1^2 + x1 1 x1 x1] [0 0 0 0 1 1 x1^2 - x1 x1^3 - x1^2 - x1 x1 - 1 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^11 + 16*x1^10 - 50*x1^9 + 75*x1^8 - 51*x1^7 + 8*x1^6 + 4*x1^5) avoiding the zero loci of the polynomials RingElem[x1, x1 - 2, x1 - 1, x1^2 - x1 - 1, 2*x1 - 3, x1^3 - 2*x1^2 + x1 - 1, x1^4 - 2*x1^3 - 2*x1^2 + 5*x1 - 1, x1 + 1, x1^2 - 2]